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Since the 1970s, blood lead levels (BLLs) in children 
have steadily declined due to increased regulation of 

lead in consumer products and increased emphasis on lead 
poisoning prevention [1, 2]. The CDC maintained a blood 
lead action level of 10 micrograms per deciliter (µg/dL)  
for many years, despite accumulating evidence of adverse 
health effects even at lower levels of lead exposure. In 
2012, the Centers for Disease Control and Prevention 
(CDC) recommended a reference value of greater than 
or equal to 5 µg/dL to identify children with high levels of 
lead in their blood, which corresponded with (National 
Health and Nutrition Examination Survey) NHANES data 
that showed 97.5% of US children aged 1–5 had BLLs below  
5 µg/dL [2]. In 2021, the CDC further reduced the reference 
value to 3.5 µg/dL [3].

Although universal blood lead testing is encouraged for 
any child aged 12 to 36 months and any child aged 36 to 72 
months with no record of a previous blood lead screening 
test, it is only required for children enrolled in Medicaid [4]. 
Additionally, the start of the COVID-19 pandemic disrupted 
routine lead screening, as evidenced by a 52% decline in 
testing from April 2019 to April 2020 in North Carolina [5]. 
The recall of LeadCare® test kits in 2021 also contributed 
to the decline in testing [6]. This marked reduction in test-
ing occurred just when children were spending more time at 

home because of social restrictions and may have been at 
increased risk for lead exposure as a result [7–9]. 

Despite progress in lead poisoning prevention, research 
has consistently shown that there is no safe BLL for children 
[10, 11]. Behavioral and cognitive deficits are associated 
with lead exposure [12, 13], even at low levels. For example, 
studies have demonstrated that BLLs less than or equal to  
5 µg/dL are associated with lower IQ [14, 15], decreased 
cognitive functioning [16], and neurobehavioral deficits 
[17]. Several studies have shown a steeper decline in IQ with 
increases in blood lead concentrations at lower compared 
to higher levels [14, 15, 18–20]. Additionally, low-level lead 
exposure has been linked with higher crime rates and antiso-
cial or delinquent behaviors in adolescents. In both individ-
ual- and aggregate-level studies, lead exposure is a robust 
predictor of school disciplinary problems in adolescence 
and violent and nonviolent crime in adulthood [21–24]. Lead 
exposure remains a persistent threat to the health and neu-
rological development of children.   
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Healthy North Carolina 2030 focuses on improving 
health equity and social and economic factors contributing 
to health outcomes [25]. North Carolina’s growing Black 
and Brown populations are experiencing worse health out-
comes [25, 26]. According to the Healthy North Carolina 
2030 report, Black Americans and American Indians have 
the highest infant mortality rates in North Carolina and 
lowest life expectancies [25]. Similarly, Black and Brown 
children and children in lower-income communities are at 
greater risk of lead exposure [27, 28]. While the Healthy 
North Carolina 2030 initiative does not aim to reduce lead 
exposure and BLLs directly, it aims to improve third grade 
reading proficiency and severe housing problems like over-
crowding, high housing costs, and lack of kitchen and/or 
plumbing facilities [25]. Poor housing conditions, particu-
larly older houses in disrepair, have been linked to higher 
BLLs, which lead to poorer education outcomes [25, 29]. 
Low-level lead exposure at age 2 has been inversely asso-
ciated with academic performance at age 10 [30]. Our 
past research shows BLLs in early childhood are negatively 
associated with educational achievement, particularly for 
educational outcomes like fourth grade reading and math-
ematics proficiency, as measured by performance on end 
of grade (EOG) standardized tests in a clear dose-response 
pattern [31, 32]. Additionally, early childhood lead exposure 
is a significant predictor of being identified with learning or 
behavioral disorders in educational records [33]. Both per-
formance on EOG testing and learning and behavioral dis-
orders have long-term implications and are correlated with 
socioeconomic status in adulthood [34]. Negative effects 
are observed with BLLs as low as 2 µg/dL.

To achieve a healthier North Carolina in 2030, we must 
continue to reduce BLLs in the population. However, identi-
fying children at high risk for exposure is challenging, espe-
cially in the absence of individual-level childhood blood lead 
data and the presence of data reporting delays and data 
quality issues [35].  

Given the known social and economic contributors to 
childhood lead exposure, publicly available census data 
provide an opportunity to identify areas at high risk for 
childhood lead exposure. In previous work, we constructed 
geographic information system (GIS)-based childhood lead 
exposure models at the tax parcel level to identify chil-
dren most at risk of lead exposure [36, 37]. Unfortunately, 
such tax parcel-level models are only possible in counties 
where tax assessor data include year built—roughly 50% 
of North Carolina’s counties. Here, we adapt the Children’s 
Environmental Health Initiative (CEHI)’s tax parcel-level lead 
model to the ZIP Code Tabulation Area (ZCTA) level to iden-
tify high-risk ZIP codes for childhood lead exposure across 
the state of North Carolina. We validate the models using 
blood lead testing data for 2010–2015, which were obtained 
from the North Carolina Department of Health and Human 
Services (NCDHHS).

Methods
Blood Lead Data 

We obtained BLLs testing data from the Childhood Lead 
Poisoning Prevention Program of the NCDHHS Division of 
Public Health, Environmental Health Section in Raleigh, 
North Carolina for the years 2010–2015. The 2015 records 
were the latest data available to us. This modeling approach 
is designed to be updated as new data are made available 
and can be adapted to any state in the United States. The 
blood lead testing data include child name, birth date, test 
date, BLL, type of test (venous or capillary), and home 
address. The data were provided pursuant to a data use 
agreement. During the study period, all children with BLLs 
below the level of detection were assigned a value of 1 μg/dL.  
BLLs were recorded and stored in the state database as inte-
ger values. 

Data Restrictions
We restricted the dataset to georeferenced records for 

children between age nine months and seven years and BLLs 
between 0 µg/dL and 300 µg/dL. For children with multiple 
records, we selected the record with the highest BLL. 

Aggregating to ZCTAs
We aggregated log normalized BLLs at the ZCTA level 

and combined with ZCTA-level census data (2011–2015 
American Community Survey five-year estimates) for known 
risk factors of childhood lead exposure. ZCTAs are general-
ized areal representations of United States Postal Service 
(USPS) ZIP code service areas [39]. The Census Bureau 
assigns the most frequently occurring ZIP code within a cen-
sus block to the entire census block. Then, census blocks are 
aggregated by code to create larger areas known as ZCTAs. 
In most cases, ZCTA and ZIP codes are the same for an 
address. We opted to use ZCTA-level data instead of cen-
sus tracts or block groups to easily translate results to the 
ZIP code level, which is more meaningful for and usable in 
community and health care applications. ZCTA-level census 
data indicate there are a total of 1,080 ZIP codes among 808 
ZCTAs for the state of North Carolina. We removed ZCTAs 
with a total population of 0 or any missing census data, 
bringing the total to 1,036 ZIP codes among 775 ZCTAs. 

Modeling
To fit a multivariable regression model, 2010–2014 

records were used as a training data set, and 2015 records 
were used as a validation data set. The training data set 
included 775 ZCTAs, and 767 ZCTAs were included in the 
validation data set. The ZCTA-level mean of log normal-
ized BLLs served as the dependent variable. We ran three 
models using explanatory variables commonly found in the 
literature [40]. The first model contained demographic risk 
factors of lead exposure, including % non-Hispanic Black,  
% Hispanic, and median household income. The second 
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model included the demographic risk factors and median 
year built, a variable to represent the environmental risk 
factor age of housing. The third model included the demo-
graphic risk factors and age of housing represented using 
two variables: % of housing units built before 1940 and % of 
housing units built from 1940 to 1979. Model fit information 
was used to assess the performance of the models. 

Ranking ZCTAs
Using 2011–2015 records, we applied the vector of coef-

ficients from the selected model to predict the expected 
mean of log normalized BLLs for each ZCTA. The 2011–2015 
data set included 997 ZIP codes among 774 ZCTAs. We 
ranked the ZCTAs into 20 quantiles by predicted values and 
compared the distribution of elevated BLLs (eBLLs) at dif-
ferent quantiles to determine the appropriate priority risk 
categorization and identify high-risk areas for childhood 
lead exposure. eBLLs were defined as greater than or equal 
to 5 µg/dL. We also examined the distribution of eBLLs at a 
lower reference value of greater than or equal to 3 µg/dL. 
We mapped the 20 quantiles to visualize trends in child-
hood lead exposure at the local and state levels. All data 
were analyzed in SAS 9.4 [41]. All maps were created using 
ArcGIS Pro 2.9.3 [42]. 

Sensitivity Analysis 
Given that there is no safe BLL for children, we performed 

a sensitivity analysis to determine whether the use of mean 
BLL in our modeling approach reliably identifies low-level 
lead exposure. Because all children in the BLL testing data 
with BLLs below the level of detection are assigned a value 
of 1 µg/dL, we modeled the proportion of BLLs greater 
than 1 µg/dL at the ZCTA level. Using 2011–2015 records, 
we fit a multivariate regression model where the ZCTA-
level proportion of BLLs greater than 1 µg/dL served as the 
dependent variable, and the variables selected in the model 
building process served as the independent variables. We 
then ranked the ZCTAs into 20 quantiles by predicted val-
ues and, to compare modeling approaches, plotted the 

assigned rank against the priority risk categorization of the 
original approach.

Results
A summary of the three models considered in the model 

building process is presented in Table 1. The results of all 
models were consistent with our previous findings obtained 
from models that were fit using data at the tax parcel unit 
level [36, 37]. The % non-Hispanic Black, % housing units 
built before 1940, and % housing units built from 1940 to 
1979 are positively correlated with the mean of log normal-
ized BLLs at the ZCTA level. The % Hispanic, median house-
hold income, and median year built are inversely associated. 
A comparison of model fit information shows a decrease in 
root mean square error (RMSE) and an increase in adjusted 
R2 with the addition of the variable median year built to 
represent housing age. Model fit criteria improve further 
when median year built is replaced with % housing units 
built before 1940 and % housing units built from 1940–1970, 
resulting in the selection of model 3. There were 774 ZCTAs 
included in this analysis.

The mean of the log normalized BLLs was estimated for 
each ZCTA using the vector of coefficients from model 3. 
ZCTAs were then ranked into 20 quantiles based on the pre-
dicted values. The first quantile consists of ZCTAs with esti-
mated BLLs in the top 5%; the second quantile represents 
the second highest, and so on. The 20th quantile consists 
of ZCTAs with estimated BLLs in the bottom 5%. Individual 
blood lead screening records for 2011–2015 were organized 
into 20 quantiles based on the rank assigned to each ZCTA 
and stratified by dichotomous variables for elevated blood 
lead levels (eBLLs) greater than or equal to 3 µg/dL and 
greater than or equal to 5 µg/dL (Table 2). By examining 
the distribution of eBLLs, we provide an example of how the 
model can be used to identify high-risk ZIP codes for screen-
ing in North Carolina. 

Between 2011 and 2015, 479,906 children aged 7 years or 
younger across 997 ZIP codes and 774 ZCTAs were screened 
for lead in North Carolina. Of the children screened, 3.37% 

table 1.
Results of Multivariable Regression for Mean of Log Normalized BLL (in µg/dL)  

 – Model 1 – Model 2 – Model 3 –
Independent variable Coefficient P-value Coefficient P-value Coefficient P-value
Intercept  0.68 <.0001 6.61 <.0001 0.58 <.0001
% non-Hispanic Black 1.09×10-3 <.0001 9.46x10-4 .0004 8.50x10-4 .0012
% Hispanic -5.99x10-3 <.0001 -5.38x10-3 <.0001 -5.06x10-3 <.0001
Median household income -3.92x10-6 <.0001 -3.23x10-6 <.0001 -3.26x10-6 <.0001
Median year built – – -3.00x10-3 <.0001 – –
% homes built before 1940 – – – – 4.16x10-3 <.0001
% homes built 1940-1979 – – – – 1.09x10-3 .0061
Adjusted R2 0.26 – 0.29 – 0.31 –
AIC  -2334 – -2367 – -2392 –
Root mean square error 0.1340 – 0.1312 – 0.1289 –
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had eBLLs at or above 5 µg/dL and 14.02% had eBLLs at 
or above 3 µg/dL. Using a reference value of greater than 
or equal to 5 µg/dL, the prevalence of eBLLs appears to be 
higher among ZIP codes in the top 12 20-quantiles, whereas 
prevalence rates in the remaining quantiles are lower than 
the statewide rate. Using a reference value of greater than 
or equal to 3 µg/dL, eBLLs also appear to be higher among 
ZIP codes in the top 12 20-quantiles, with the exception of 
the 10th quantile.

We used the chi-square test for independence to show 
a statistically significant association between priority risk 
category and prevalence of eBLLs (p-value less than .0001). 
Cell chi-square values show that most of this association 
is due to the first six quantiles (1–6), where the number of 

observed eBLLs is greater than expected, and the last four 
quantiles (17–20), where the number of observed eBLLs is 
less than expected (Supplemental Table 1). Conversely, the 
contribution of risk categories 7–16 to the total chi-square 
statistic is relatively small. We also observed a similar trend 
when using 3 µg/dL as the reference for eBLLs, although dif-
ferences between expected and observed eBLLs are greater 
and span additional risk categories (Supplemental Table 2).  

Results of the sensitivity analysis show the rank assigned 
to each ZCTA using the proportion of BLLs greater than  
1 µg/dL as the dependent variable is comparable to 
the priority risk categorization of the original approach 
(Supplemental Figure 1). When plotting the risk rank of 

the original approach versus risk rank of the new modeling 
approach, the points are mostly along the 45-degree line. 
Where there are differences in priority risk categorization, it 
is typically by a difference of one risk rank.

Discussion
This analysis builds on our parcel-level model for child-

hood lead exposure risk. Whereas the parcel-level model 

supplemental table 1
Cell Chi-Square Values for Chi-Square Test Using 5 µg/dL 
Reference Value

This appendix is available in its entirety in the  
online edition of the NCMJ.

supplemental table 2
Cell Chi-Square Values for Chi-Square Test Using 3µg/dL 
Reference Value

This appendix is available in its entirety in the  
online edition of the NCMJ.

supplemental figure 1
Comparison of Modeling Approaches for ZCTA-Level Risk 
Index

This appendix is available in its entirety in the  
online edition of the NCMJ.

table 2.
Distribution of eBLLs in North Carolina by 20-quantiles  

     No. (%) BLL tests No. (%) BLL tests 
 Quantile No. ZCTAs No. ZIP codes No. BLL tests ≥ 5 µg/dL ≥ 3 µg/dL
 1 (Top 5%) 38 52 10889 792 (7.27) 2651 (24.35)
 2 39 50 12629 625 (4.95) 2442 (19.34)
 3 39 53 15917 865 (5.43) 3436 (21.59)
 4 38 43 12375 597 (4.82) 2597 (20.99)
 5 39 51 21216 944 (4.45) 3603 (16.98)
 6 39 49 20169 895 (4.44) 3863 (19.15)
 7 39 49 20264 714 (3.52) 3241 (15.99)
 8 38 51 22899 892 (3.90) 3815 (16.66)
 9 39 47 22761 893 (3.92) 3601 (15.82)
 10 39 49 21278 784 (3.68) 2905 (13.65)
 11 39 55 25982 955 (3.68) 4043 (15.56)
 12 38 45 17968 687 (3.82) 2698 (15.02)
 13 39 43 16002 509 (3.18) 2170 (13.56)
 14 39 54 36203 1090 (3.01) 4674 (12.91)
 15 39 56 38427 1093 (2.84) 4564 (11.88)
 16 38 48 31959 902 (2.82) 3893 (12.18)
 17 39 52 39249 912 (2.32) 4166 (10.61)
 18 39 50 33027 776 (2.35) 3470 (10.51)
 19 39 54 36299 708 (1.95) 3351 (9.23)
 20 (Bottom 5%) 38 46 24393 534 (2.19) 2080 (8.53)
 Total 774 997 479906 16167 (3.37) 67263 (14.02)
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was constructed for select counties in North Carolina (six 
counties in the initial analysis [36] and 18 in Kim and col-
leagues’ 2008 analysis [37]), the ZCTA-level model was 
built using data for 775 of the 808 ZCTAs in North Carolina, 
covering a larger geographic area. 

Figure 1a shows a map of the predicted mean of log nor-
malized BLLs we generated for each ZCTA. Using this infor-
mation alone, it can be difficult to determine which areas to 
prioritize. While Figure 1a highlights a few high-risk areas, 
the majority of ZCTAs in the state appear to be at moderate 
risk for childhood lead exposure. The use of priority risk cat-
egories provides more clarity and highlights additional areas 
of potential concern. Maps of the different display structures 
show how the model allows for flexibility and adaptation to 
different screening programs (Figures 1b and 1c). While the 
larger groupings help to visualize statewide trends in child-
hood lead exposure risk, smaller groupings may provide more 
detailed and useful information to local health departments 
and allow communities to use resources more efficiently.

In our consultations with the North Carolina Childhood 
Lead Poisoning Prevention Program, we recommended des-
ignating at least the first six quantiles as high-risk areas 
for childhood lead poisoning, consisting of 298 ZIP codes. 

However, policymakers should use whatever input process 
they deem most appropriate to set the cutoff. Any child 
in the high-risk ZIP codes should be tested for lead. For 
children in the remaining ZIP codes, health care providers 
should employ the CDC lead screening questionnaire to 
determine whether lead testing is needed. This will help to 
identify more children with low-level lead exposure, includ-
ing BLLs greater than or equal to 3 µg/dL. The 20-quantiles 
can be consolidated into whichever larger risk categories are 
most helpful to health departments, pediatric practices, or 
community groups.

Limitations 
In theory, all children whose parents responded “yes” 

or “don’t know” to any of the three questions on the CDC’s 
Clinical Lead Risk Assessment Questionnaire should have 
been tested for lead, but it is difficult to ascertain true prac-
tice at the time [38, 43]. Because BLL screening is not uni-
versal and only mandatory for children enrolled in Medicaid, 
the BLL screening records used in this study may not be 
representative of all at-risk children, creating potential for 
selection bias. This makes it more likely that we will recom-
mend ZIP codes with high numbers of Medicaid-enrolled 

figure 1.
Predicted Mean of Log Normalized BLLs: (a) Unclassed; (b) 20-quantiles; (c) Lead (Pb) Priority Risk Categories 
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children as universal high-risk ZIP codes, potentially missing 
other high-risk ZIP codes and children. 

Additionally, the adjusted R2 value of the selected model 
indicates that our model explains only 31% of the variance 
in BLLs at the ZCTA level. By scaling our model to the ZCTA 
level, we lost information available at the tax parcel unit level. 
Yet, the number of counties with available tax assessor data 
limits our ability to create a parcel-level model for the entire 
state. Still, all explanatory variables in the model are statis-
tically significant and have the expected sign. Furthermore, 
this value is comparable to the R2 values of other models 
that use aggregated individual-level data [44, 45]. Despite 
these limitations, this analysis shows the usefulness of 
ZCTA-level information, particularly when individual or tax 
parcel unit-level data are not available. 

Conclusions
The BLLs of children exposed to lead tend to increase 

during ages 0–2 years and peak at ages 18–24 months [46]. 
Children enrolled in Medicaid are at high risk for lead expo-
sure because they are more likely to live in older, poorly 
maintained homes that are more likely to contain lead paint 
[47]. Children enrolled in Medicaid are required to receive 
blood lead tests at ages 12 months and 24 months or once if 
aged 24–72 months with no record of a previous blood lead 
test [4]. For children not enrolled in Medicaid, the CDC rec-
ommends focusing efforts on high-risk neighborhoods and 
children [48]. Clinicians can use the priority risk categoriza-
tion presented here to flag high-risk ZIP codes in the medical 
record that trigger an assessment. The recommended vac-
cination schedule from birth through age 6 provides several 
opportunities for blood lead testing in a clinical setting [49]. 
In addition to well-child visits, health care providers can also 
conduct blood lead tests at sick-child visits [43]. 

The findings of this study demonstrate the utility of 
ZCTA-level census data in identifying high-risk ZIP codes for 
childhood lead exposure. Results of the ZCTA-level model 
are consistent with our previous findings at the tax parcel 
level but cover a wider geographic area. We identified six 
(of 20) quantiles, corresponding to 232 ZCTAs and 298 ZIP 
codes, as high-risk areas for childhood lead exposure. The 
model can be used at the state level to determine high-risk 
ZIP codes for universal testing. It can also be used by local 
health departments to tailor screening and testing strate-
gies at the county level and can be used by clinicians to 
inform screening at well- and sick-child visits. Leveraging 
the availability of ZCTA-level census data, this approach can 
be replicated nationwide to achieve Healthy People 2030 
objectives.  
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supplemental table 1.
Cell Chi-Square Values for Chi-Square Test Using 5 µg/dL 
Reference Value  

Observed No. BLL tests
Expected No. BLL tests
Cell Chi-Square – – –
  No. BLL tests No. BLL tests 
Risk Category < 5 µg/dL ≥ 5 µg/dL Total No. BLL tests
  10097 792 
 1 10522 366.83 10889 
  17.18 492.8
  12004 625 
 2 12204 425.44 12629 
  3.2632 93.603
  15052 865 
 3 15381 536.21 15917 
  7.0285 201.61
  11778 597 
 4 11958 416.89 12375 
  2.7129 77.816
  20272 944 
 5 20501 714.72 21216 
  2.5642 73.551
  19274 895 
 6 19490 679.45 20169 
  2.3839 68.381
  19550 714 
 7 19581 682.65 20264 
  0.0502 1.4397
  22007 89 
 8 22128 771.42 22899 
  0.65712 18.848
  21868 893 
 9 21994 766.77 22761 
  0.7245 20.781
  20494 784 
 10 20561 716.81 21278 
  0.2196 6.298
  25027 955 
 11 25107 875.28 25982 
  0.2531 7.2613
  17281 687 
 12 17363 605.3 17968 
  0.3844 11.026
  15493 509 
 13 15463 539.07 16002 
  0.0585 1.6777
  35113 1090 
 14 34983 1219.6 36203 
  0.4801 13.772
  37334 1093 
 15 37132 1294.5 38427 
  1.0937 31.372
  31057 902 
 16 30882  1076.6 31959 
  0.9875 28.325
  38337 912 
 17 37927 1322.2 39249 
  4.4369 127.27
  32251 776 
 18 31914 1112.6 33027 
  3.5503 101.84
  35591 708 
 19 35076 1222.8 36299 
  7.5566 216.75
  23859 534 
 20 23571 821.75 24393 
  3.5127 100.76
Total  463739 16167 479906
X2 (19, N = 479,906) = 5730.3, P <.0001



supplemental table 2.
Cell Chi-Square Values for Chi-Square Test Using 3 µg/dL 
Reference Value  

Observed No. BLL tests
Expected No. BLL tests
Cell Chi-Square – – –
  No. BLL tests No. BLL tests 
Risk Category < 3 µg/dL ≥ 3 µg/dL Total No. BLL tests
  8238 2651 
 1 9362.8 1526.2 10889 
  135.13 828.99 
  10187 2442 
 2 10859 1770.1 12629 
  41.578 255.07 
  12481 3436 
 3 13686 2230.9 15917 
  106.11 650.97 
  9778 2597 
 4 10641 1734.5 12375 
  69.918 428.93 
  17613 3603 
 5 18242 2973.6 21216 
  21.715 133.22 
  16306 3863 
 6 17342 2826.9 20169 
  61.906 379.78 
  17023 3241 
 7 17424 2840.2 20264 
  9.2207 56.567 
  19084 3815 
 8 19690 3209.5 22899 
  18.621 114.24 
  19160 3601 
 9 19571 3190.2 22761 
  8.6249 52.912 
  18373 2905 
 10 18296 2982.3 21278 
  0.3266 2.0034 
  21939 4043 
 11 22340 3641.6 25982 
  7.212 44.244 
  15270 2698 
 12 15450 2518.4 17968 
  2.0885 12.812 
  13832 2170 
 13 13759 2242.8 16002 
  0.3854 2.3643
  31529 4674 
 14 31129 5074.2 36203 
  5.1442 31.558
  33863 4564 
 15 33041 5385.9 38427 
  20.444 125.42
  28066 3893 
 16 27480 4479.3 31959 
  12.511 76.749
  35083 4166 
 17 33748 5501.1 39249 
  52.817 324.02
  29557 3470 
 18 28398 4629 33027 
  47.304 290.2
  32948 3351 
 19 31211 5087.6 36299 
  96.627 592.78
  22313 2080 
 20 20974 3418.9 24393 
  85.469 524.33
Total  463739 16167 479906
X2 (19, N = 479,906) = 5730.3, P <.0001



supplemental figure 1.
Comparison of Modeling Approaches for ZCTA-Level Risk Index 


